Hoja de placa de acero inoxidable 2507

Sandmeyer Steel Company almacena la única línea completa de placa dúplex 2507 en América del Norte con placas en espesores de 3/16"" (4,8 mm) a 3"" (76,2 mm). La aleación dúplex 2507 es una aleación rentable en comparación con los aceros inoxidables súper austeníticos 904L o 6 % de molibdeno.

Available thicknesses for Alloy 2507:

3/16" 1/4" 5/16" 3/8" 1/2" 5/8" 3/4" 1" 1 1/4"
4.8mm 6.3mm 7.9mm 9.5mm 12.7mm 15.9mm 19mm 25.4mm 31.8mm
1 1/2" 1 5/8" 1 3/4" 2" 2 1/4" 2 1/2" 2 3/4" 3"
38.1mm 41.3mm 44.5mm 50.8mm 57.2mm 63.5mm 69.9mm 76.2mm
La aleación 2507 (UNS S32750) es un acero inoxidable súper dúplex con 25 % de cromo, 4 % de molibdeno y 7 % de níquel diseñado para aplicaciones exigentes que requieren una fuerza excepcional y resistencia a la corrosión, como equipos de procesos químicos, petroquímicos y de agua de mar. El acero tiene una excelente resistencia al agrietamiento por corrosión bajo tensión de cloruro, alta conductividad térmica y un bajo coeficiente de expansión térmica. Los altos niveles de cromo, molibdeno y nitrógeno brindan una excelente resistencia a las picaduras, grietas y corrosión general.

Propiedades generales


La aleación 2507 es un acero inoxidable súper dúplex con 25 % de cromo, 4 % de molibdeno y 7 % de níquel diseñado para aplicaciones exigentes que requieren una fuerza excepcional y resistencia a la corrosión, como equipos de procesos químicos, petroquímicos y de agua de mar. El acero tiene una excelente resistencia al agrietamiento por corrosión bajo tensión por cloruros, alta conductividad térmica y un bajo coeficiente de expansión térmica. Los altos niveles de cromo, molibdeno y nitrógeno brindan una excelente resistencia a las picaduras, grietas y corrosión general.

La resistencia al impacto también es alta. La aleación 2507 no se recomienda para aplicaciones que requieren exposiciones prolongadas a temperaturas superiores a 570 °F debido al riesgo de reducción de la tenacidad.

Aplicaciones

  • Equipos para la industria del petróleo y el gas
  • Plataformas marinas, intercambiadores de calor, sistemas de agua de procesos y servicios, sistemas contra incendios, sistemas de agua de inyección y de lastre
  • Industrias de procesos químicos, intercambiadores de calor, recipientes y tuberías
  • Plantas desaladoras, plantas de RO de alta presión y tuberías de agua de mar
  • Componentes mecánicos y estructurales, piezas de alta resistencia y resistentes a la corrosión
  • Sistemas FGD de la industria energética, sistemas depuradores industriales y de servicios públicos, torres de absorción, conductos y tuberías

Estándares

ASTM/ASME .......... A240 - UNS S32750
EURONORMA............ 1.4410 - X2 Cr Ni MoN 25.7.4
AFNOR.................... Z3 CN 25.06 Az

Resistencia a la corrosión

General Corrosion
The high chromium and molybdenum content of 2507 makes it extremely resistant to uniform corrosion by organic acids like formic and acetic acid. 2507 also provides excellent resistance to inorganic acids, especially those containing chlorides.

In dilute sulfuric acid contaminated with chloride ions, 2507 has better corrosion resistance than 904L, which is a highly alloyed austenitic steel grade specially designed to resist pure sulfuric acid.

Stainless steel of type 316L (2.5%Mo) cannot be used in hydrochloric acid due to the risk of localized and uniform corrosion. However, 2507 can be used in dilute hydrochloric acid. Pitting need not be a risk in the zone below the borderline in this figure, but crevices must be avoided.

Isocorrosion curves

Isocorrosion curves, 0.1 mm/year, in sulfuric acid with an addition of 2000 ppm chloride ions

Isocorrosion curves

Isocorrosion curves, 0.1 mm/year, in hydrochloric acid. Broken line curve represents the boiling point

Critical Pitting Temperature

Critical Pitting Temperature (CPT) range for various alloys in 1M NACl

Critical Crevice Corrosion Temperature

Critical Crevice Corrosion Temperature (CCT)for various alloys in 10% FeCl3

Intergranural Corrosion
2507's low carbon content greatly lowers the risk of carbide precipitation at the grain boundaries during heat treatment; therefore, the alloy is highly resistant to carbide-related intergranular corrosion.

Stress Corrosion Cracking
The duplex structure of 2507 provides excellent resistance to chloride stress corrosion cracking (SCC). Because of its higher alloy content, 2507 is superior to 2205 in corrosion resistance and strength. 2507 is especially useful in offshore oil and gas applications and in wells with either naturally high brine levels or where brine has been injected to enhance recovery.

Pitting Corrosion
Different testing methods can be used to establish the pitting resistance of steels in chloride-containing solutions. The data above were measured by an electrochemical technique based on ASTM G 61. The critical pitting temperatures (CPT) of several high-performance steels in a 1M sodium chloride solution were determined. The results illustrate the excellent resistance of 2507 to pitting corrosion. The normal data spread for each grade is indicated by the dark gray portion of the bar.

Crevice Corrosion
The presence of crevices, almost unavoidable in practical constructions and operations, makes stainless steels more susceptable to corrosion in chloride enviroments. 2507 is highly resistant to crevice corrosion. The critical crevice corrosion temperatures of 2507 and several other high-performance stainless steels are shown above.

Análisis químico

Typical Values (Weight %)

Carbon Chromium Nickel Molybdenum Nitrogen Others
0.020 25 7 4.0 0.27 S=0.001
PREN = [Cr%] = 3.3 [Mo%] = 16 [N %] ≥ 40

Mechanical Properties

Mechanical and Physical Properties

2507 combines high tensile and impact strength with a low coefficient of thermal expansion and high thermal conductivity. These properties are suitable for many structural and mechanical components. The low, ambient, and elevated temperature mechanical properties of 2507 sheet and plate are shown below. All of the test data shown are for samples in the annealed and quenched condition.

2507 is not recommended for applications which require long exposures to temperatures in excess of 570°F because of the increased risk of a reduction in toughness. The data listed here are typical for wrought products and should not be regarded as a maximum or minimum value unless specifically stated.

Mechanical Properties

   
0.2% Offset Yield Strength, ksi 80 min.
Ultimate Tensile Strength, ksi 116 min.
1% Offset Yield Strength, ksi 91 min.
Elongation in 2 inches, % 15 min.
Hardness, Rockwell C 32 max
Impact Energy, ft-lbs 74 min.

Low Temperature Impact Properties

Temperature °F RT 32 -4 -40
Ft-lbs 162 162 155 140
Temperature °F -76 -112 -148 -320
Ft-lbs 110 44 30 7

Elevated Temperature Tensile Properties

Temperature °F 68 212 302 392 482
0.2% Offset Yield Strength, ksi 80 65 61 58 55
Ultimate Tensile Strength, ksi 116 101 98 95 94

Values obtained for hot rolled plates (th ≤ 2"). Alloy 2304 must not be used for a long time at temperatures higher than 300°C (572°F), where precipitation hardening phenomenon occurs.

Toughness Values (KCV Minimum Values)

Temp. -50°C +20°C -60°F +70°F
Single 75 J/cm_ 90 J/cm_ 54 ft. lbs 65 ft. lbs
Average (5) 90 J/cm_ 150 J/cm 65 ft. lbs 87 ft. lbs

Hardness (Typical Values)

Average (5) HV10 180-230 HB : 180-230 HRC _ 20

Propiedades físicas

Density : 7,800 kg/m3 - 0.28 lb/in3

Interval
Temper
°C
Thermal
expansion
ax10M-bK-1
°C
 
Resistivity

(μ_ cm)
Thermal
conductivity
(W.m-1.K-1)
Specific
heat
(J.kg-1.K-1
Young
modulus
E
(GPa)
Shear
modulus
G
(GPa)
20-100 13 20 80 17 450 200 75
20-100 13 100 92 18 500 190 73
20-200 13.5 200 100 19 530 180 70
20-300 14 300 105 20 560 170 67

Propiedades mecánicas

Datos de fabricación

Processing

Hot Forming

2507 should be hot worked between 1875°F and 2250°F. This should be followed by a solution anneal at 1925°F minimum and a rapid air or water quench.

Cold Forming

Most of the common stainless steel forming methods can be used for cold working 2507. The alloy has a higher yield strength and lower ductility than the austenitic steels so fabricators may find that higher forming forces, increased radius of bending, and increased allowance for springback are necessary. Deep drawing, stretch forming, and similar processes are more difficult to perform on 2507 than on an austenitic stainless steel. When forming requires more than 10% cold deformation, a solution anneal and quench are recommended.

Heat Treatment

2507 should be solution annealed and quenched after either hot or cold forming. Solution annealing should be done at a minimum of 1925°F. Annealing should be followed immediately by a rapid air or water quench. To obtain maximum corrosion resistance, heat treated products should be pickled and rinsed.

Welding

2507 possesses good weldability and can be joined to itself or other materials by shielded metal arc welding (SMAW), gas tungsten arc welding (GTAW), plasma arc welding (PAW), flux cored wire (FCW), or submerged arc welding (SAW). 2507/P100 filler metal is suggested when welding 2507 because it will produce the appropriate duplex weld structure.

Preheating of 2507 is not necessary except to prevent condensation on cold metal. The interpass weld temperature should not exceed 300°F or the weld integrity can be adversely affected. The root should be shielded with argon or 90% N2/10% H2 purging gas for maximum corrosion resistance. The latter provides better corrosion resistance.

If welding is to be done on only one surface and post-weld cleaning is not possible, GTAW is suggested for root passes. GTAW or PAW should not be done without a filler metal unless post-weld cleanup is possible. A heat input of 5-38 kJ/in. should be used for SMAW or GTAW. A heat input of about 50kJ/in. can be used for SAW.

Consigue una cotización